Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(5): 2629-2643, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36068421

RESUMO

Airborne particulate matter is a serious threat to human health, especially in fast-growing cities. In this study, we carried out a magnetic and elemental study on tree leaves used as passive captors and urban dust from various sites in the city of Santiago, Chile, to assess the reliability of magnetic and elemental measurements to characterize particulate matter pollution from vehicular origin. We found that the magnetic susceptibility and saturation isothermal remanent magnetization measured on urban tree leaves is a good proxy for tracing anthropogenic metallic particles and allow controlling the exposure time for particulate matter collection, in agreement with other studies carried out in large cities. Similar measurements on urban soil can be influenced by particles of detritic (natural) origin, and therefore, magnetic measurements on tree leaves can help to identify hotspots where fine particles are more abundant. Elemental particle-induced X-ray emission analysis of tree leaves showed the presence of a number of elements associated with vehicular emissions, in particular Cu, Zn, Fe, K and S which are present at every site, and As, Se, V, Ni, Sr, Zr, Mo and Pb identified at some sites. We observed a correlation between magnetic parameters and the concentrations of S and Br as well as Cu to a smaller extent. Moreover, this study shows the importance of selecting carefully the tree species as well as the location of trees in order to optimize phytoremediation.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/análise , Árvores , Poluentes Atmosféricos/análise , Chile , Reprodutibilidade dos Testes , Monitoramento Ambiental , Folhas de Planta/química , Cidades , Fenômenos Magnéticos
2.
Chemosphere ; 298: 134272, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292272

RESUMO

The concentration of air pollutants is governed by both emission rate and atmospheric dispersion conditions. The role played by the atmospheric mixing height in determining the daily time pattern of PM components at the time resolution of 2 h was studied during 21 days of observation selected from a 2-month field campaign carried out in the urban area of Rome, Italy. Natural radioactivity was used to obtain information about the mixing properties of the lower atmosphere throughout the day and allowed the identification of advection and stability periods. PM10 composition was determined by X-ray fluorescence, ion chromatography, inductively coupled plasma-mass spectrometry and thermo-optical analysis. A satisfactory mass closure was obtained on a 2-h basis, and the time pattern of the PM10 macro-sources (soil, sea, secondary inorganics, organics, traffic exhaust) was acquired at the same time scale. After a complete quality control procedure, 27 main components and source tracers were selected for further elaboration. On this database, we identified some groups of co-varying species related to the main sources of PM. Each group showed a peculiar behaviour in relation to the mixing depth. PM components released by soil, biomass burning and traffic exhaust, and, particularly, ammonium nitrate, showed a clear dependence on the mixing properties of the lower atmosphere. Biomass burning components and organics peaked during the night hours (around midnight), following the atmospheric stabilization and increased emission rate. Traffic exhausts and non-exhausts species also peaked in the evening, but they showed a second, minor increase between 6:00 and 10:00 when the strengthening of the emission rate (morning rush hour) was counterbalanced by the dilution of the atmosphere (increasing mixing depth). In the case of ammonium nitrate, high concentrations were kept during the whole night and morning.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Solo , Emissões de Veículos/análise
3.
Eur Phys J Plus ; 136(4): 472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968561

RESUMO

The LABEC laboratory, the INFN ion beam laboratory of nuclear techniques for environment and cultural heritage, located in the Scientific and Technological Campus of the University of Florence in Sesto Fiorentino, started its operational activities in 2004, after INFN decided in 2001 to provide our applied nuclear physics group with a large laboratory dedicated to applications of accelerator-related analytical techniques, based on a new 3 MV Tandetron accelerator. The new accelerator greatly improved the performance of existing Ion Beam Analysis (IBA) applications (for which we were using since the 1980s an old single-ended Van de Graaff accelerator) and in addition allowed to start a novel activity of Accelerator Mass Spectrometry (AMS), in particular for 14C dating. Switching between IBA and AMS operation became very easy and fast, which allowed us high flexibility in programming the activities, mainly focused on studies of cultural heritage and atmospheric aerosol composition, but including also applications to biology, geology, material science and forensics, ion implantation, tests of radiation damage to components, detector performance tests and low-energy nuclear physics. This paper describes the facilities presently available in the LABEC laboratory, their technical features and some success stories of recent applications.

4.
Sci Total Environ ; 734: 139202, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32460070

RESUMO

A one-year campaign of joint sampling of aerosols and precipitation, carried out in León, Spain, allowed to study the impact of two special events that affected the air quality in the north of the country, on rainfall in the city: a period with wildfires and a Saharan dust intrusion. The wildfires that occurred in northern Portugal and northwestern Spain in August 2016 affected the chemistry of rainfall on 15 August 2016, causing an increase in concentrations of NH4+, Na+, Cl-, K+, Mg2+, Ca2+, SO42- and NO3- and in the concentrations of organic acids, which was reflected in the levels of soluble and insoluble organic carbon. This led to acidification of rainwater (pH = 4.8). The second precipitation event was registered between 11 and 14 February 2017, during which the rainwater was collected in four daily fractions (P1, P2, P3 and P4). The rain sample of 12 February (P2) coincided with a Saharan dust intrusion that reached northern Iberia that day. The chemical composition of P2 showed an increase in the Ca2+ (>800%), Mg2+ (71%), Cl- (62%), and SO42- (33%) concentrations, with respect to P1. The input of crustal elements to the atmosphere helped to neutralize the P2 rainwater, causing pH values higher than 6.5. Once the dust intrusion left the north of the Peninsula, the composition of rainwater P3 and P4 revealed a mixture of marine contribution with local anthropogenic emissions, as well as a decrease in ion concentrations and conductivity, and an increase in pH values.

5.
Sci Total Environ ; 669: 213-228, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878930

RESUMO

Saharan air masses can transport high amounts of mineral dust particles and biological material to the Iberian Peninsula. During winter, this kind of events is not very frequent and usually does not reach the northwest of the Peninsula. However, between 21 and 22 February 2016 and between 22 and 23 February 2017, two exceptional events were registered in León (Spain), which severely affected air quality. An integrative approach including: i) typical synoptic conditions; ii) aerosol chemical composition; iii) particle size distributions; iv) pollen concentration; v) aerosol optical depth (AOD); vi) radiative forcing and vii) estimation of the impact of aerosols in the respiratory tract, was carried out. In the global characterization of these events, the exceedance of the PM10 daily limit value, an increase in the coarse mode and a rise in the iron concentration were observed. On the 2016 event, an AOD and extinction-related Ångström exponent clearly characteristic of desert aerosol (1.1 and 0.05, respectively) were registered. Furthermore, pollen grains not typical of flowering plants in this period were identified. The chemical analysis of the aerosol from the 2017 event allowed us to confirm the presence of the main elements associated with mineral sources (aluminum, calcium, and silica concentrations). An increase in the SO42-, NO3- and Cl- concentrations during the Saharan dust intrusion was also noted. However, in this event, there was no presence of atypical pollen types. The estimated dust radiative forcing traduced a cooling effect for surface and atmosphere during both events, corroborated by trends of radiative flux measurements. The estimated impact on the respiratory tract regions of the high levels of particulate matter during both Saharan dust intrusions showed high levels for the respirable fraction.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poeira/análise , Monitoramento Ambiental , Doenças Respiratórias/epidemiologia , Aerossóis/efeitos adversos , Aerossóis/análise , Humanos , Tamanho da Partícula , Material Particulado/efeitos adversos , Material Particulado/análise , Pólen , Doenças Respiratórias/induzido quimicamente , Estações do Ano , Espanha/epidemiologia , Luz Solar
6.
Environ Pollut ; 247: 802-811, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30721871

RESUMO

A particulate matter (PM) source apportionment study was carried out in one of the most polluted districts of Tuscany (Italy), close to an old waste incinerator plant. Due to the high PM10 levels, an extensive field campaign was supported by the Regional Government to identify the main PM sources and quantify their contributions. PM10 daily samples were collected for one year and analysed by different techniques to obtain a complete chemical characterisation (elements, ions and carbon fractions). Hourly fine (<2.5 µm) and coarse (2.5-10 µm) aerosol samples were collected by a Streaker sampler for a shorter period and hourly elemental concentrations were obtained by PIXE. Positive Matrix Factorization (PMF) analysis of daily and hourly data allowed the identification of 10 main sources: six anthropogenic (Biomass Burning, Traffic, Secondary Nitrates, Secondary Sulphates, Incinerator, Heavy Oil combustion), two natural (Saharan Dust and Fresh Sea Salt) and two mixed sources (Local Dust and Aged Sea Salt). Biomass burning turned out to be the main source of PM, accounting for 30% of the PM10 mass as annual average, followed by Traffic (18%) and Secondary Nitrates (14%). Emissions from the Incinerator turned out to be only 2% of PM10 mass on average. PM10 composition and source apportionment have been assessed in a polluted area near a waste incinerator, by PMF analysis on daily and hourly compositional data sets.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Incineração , Material Particulado/análise , Aerossóis/análise , Biomassa , Carbono/análise , Poeira/análise , Itália , Nitratos/análise , Sulfatos/análise
7.
Sci Total Environ ; 541: 502-511, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26414851

RESUMO

Advanced receptor models have been recently developed and tested in order to improve the resolution of apportionment problems reducing rotational ambiguity of results and aiming at identifying a larger number of sources. In particular, multi-time model is a factor analysis method able to compute source profiles and contributions using aerosol compositional data with different time resolutions. Unlike traditional factor analysis, each measured value can be inserted into multi-time model with its original time schedule, thus all temporal information can be effectively used in the modelling process. In this work, multi-time model was expanded in order to impose constraints on modelled factors aiming at improving the source identification. Moreover, as far as we know for the first time, a suitable bootstrap technique was implemented in the multi-time scheme to estimate the uncertainty of the final constrained solutions. These implemented approaches were tested on a PM2.5 (particulate matter with aerodynamic diameter <2.5 µm) dataset composed of 24-h samples collected during one year and hourly data sampled in parallel for two shorter periods in Florence (Italy). The daily samples were chemically characterised for elements, ions and carbonaceous components while elemental concentrations only were available for high-time resolved samples. The application of the advanced model revealed the major contribution from traffic (accounting for 37% of PM2.5 as annual average) and allowed an accurate characterisation of involved emission processes. In particular, exhaust and non-exhaust emissions were identified. The constraints imposed in the continuation run led to a better description of the factor associated to nitrates and also of biomass burning profile and the bootstrap results gave useful information to assess the reliability of source apportionment solutions. Finally, the comparison with the results computed by ME-2 base model applied to daily and hourly compositional data separately demonstrated the advantages provided by the multi-time approach.

8.
Appl Radiat Isot ; 103: 82-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26070174

RESUMO

The Proton Induced X-ray Emission (PIXE) technique is a reliable ion beam analytical tool for the characterization of thin aerosol samples, but it can underestimate the lightest measurable elements (such as Na, Mg, Al and Si) owing to the absorption of their X-rays inside the sample. The Proton Induced Gamma-ray Emission (PIGE) technique could be employed as avalid means to determine corrections for such an effect. Hence, in this study, Fine (PM(2.5)) and Coarse (PM(10-2.5)) particulate matter samples collected at Ikeja, Lagos-Nigeria, using a double staged 'Gent' stacked sampler were analyzed for their elemental concentrations using an external beam set-up for simultaneous PIXE and PIGE measurements. The measured PIXE concentrations as well as the PIGE correction factors for Na and Al detected in the PM(10-2.5) samples (collected on polycarbonate Nuclepore membranes) are reported. The concentrations of 24 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, Cs and Pb) detected in both fractions were displayed, discussed and likely sources of these elements were also identified.

9.
Environ Sci Pollut Res Int ; 22(17): 13328-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25940489

RESUMO

Seasonal changes in the levels of PM1 and its main components (organic carbon (OC), elemental carbon (EC), SO4 (2-), NO3 (-) and NH4 (+)) were studied in an urban street canyon in southeastern Spain. Although PM1 levels did not show an evident seasonal cycle, strong variations in the concentrations of its major components were observed. Ammonium sulfate, the main secondary inorganic compound, was found to be of regional origin. Its formation was favored during summer due to increased photochemical activity. In contrast, the concentrations of particulate ammonium nitrate, which is thermally unstable, were highest in winter. Although traffic emissions are the dominant source of EC in the city, variations in traffic intensity could not explain the seasonal cycle of this component. The higher EC concentrations during the cold months were attributed to the lower dispersion conditions and the increase in EC emissions. Special attention has been given to variations in organic carbon levels since it accounted for about one third of the total PM1 mass. The concentrations of both total OC and secondary OC (SOC) were maxima in winter. The observed seasonal variation in SOC levels is similar to that found in other southern European cities where the frequency of sunny days in winter is high enough to promote photochemical processes.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Aerossóis , Carbono/análise , Cidades , Monitoramento Ambiental , Humanos , Nitratos/análise , Estações do Ano , Espanha , Compostos Orgânicos Voláteis/análise
10.
Sci Total Environ ; 511: 11-20, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25525710

RESUMO

Biomass burning (BB) is a significant source of particulate matter (PM) in many parts of the world. Whereas numerous studies demonstrate the relevance of BB emissions in central and northern Europe, the quantification of this source has been assessed only in few cities in southern European countries. In this work, the application of Positive Matrix Factorisation (PMF) allowed a clear identification and quantification of an unexpected very high biomass burning contribution in Tuscany (central Italy), in the most polluted site of the PATOS project. In this urban background site, BB accounted for 37% of the mass of PM10 (particulate matter with aerodynamic diameter<10 µm) as annual average, and more than 50% during winter, being the main cause of all the PM10 limit exceedances. Due to the chemical complexity of BB emissions, an accurate assessment of this source contribution is not always easily achievable using just a single tracer. The present work takes advantage of the combination of a long-term daily data-set, characterized by an extended chemical speciation, with a short-term high time resolution (1-hour) and size-segregated data-set, obtained by PIXE analyses of streaker samples. The hourly time pattern of the BB source, characterised by a periodic behaviour with peaks starting at about 6 p.m. and lasting all the evening-night, and its strong seasonality, with higher values in the winter period, clearly confirmed the hypothesis of a domestic heating source (also excluding important contributions from wildfires and agricultural wastes burning).


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise , Biomassa , Cidades , Incêndios
11.
Sci Total Environ ; 490: 488-500, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24875261

RESUMO

In this study, the Multilinear Engine (ME-2) receptor model was applied to speciated particulate matter concentration data collected with two different measuring instruments upwind and downwind of a steelworks complex in Port Talbot, South Wales, United Kingdom. Hourly and daily PM samples were collected with Streaker and Partisol samplers, respectively, during a one month sampling campaign between April 18 and May 16, 2012. Daily samples (PM10, PM2.5, PM2.5-10) were analysed for trace metals and water-soluble ions using standard procedures. Hourly samples (PM2.5 and PM2.5-10) were assayed for 22 elements by Particle Induced X-ray Emission (PIXE). PM10 data analysis using ME-2 resolved 6 factors from both datasets identifying different steel processing units including emissions from the blast furnaces (BF), the basic oxygen furnace steelmaking plant (BOS), the coke-making plant, and the sinter plant. Steelworks emissions were the main contributors to PM10 accounting for 45% of the mass when including also secondary aerosol. The blast furnaces were the largest emitter of primary PM10 in the study area, explaining about one-fifth of the mass. Other source contributions to PM10 were from marine aerosol (28%), traffic (16%), and background aerosol (11%). ME-2 analysis was also performed on daily PM2.5 and PM2.5-10 data resolving 7 and 6 factors, respectively. The largest contributions to PM2.5-10 were from marine aerosol (30%) and blast furnace emissions (28%). Secondary components explained one-half of PM2.5 mass. The influence of steelworks sources on ambient particulate matter at Port Talbot was distinguishable for several separate processing sections within the steelworks in all PM fractions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Metalurgia , Modelos Químicos , Material Particulado/análise , Aço , País de Gales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...